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Athletes and muscle fibers

INTRODUCTION
Skeletal muscle is a heterogeneous and metabolically active tissue 
containing Type I (slow-twitch) and Type II (fast-twitch, subdivided 
into IIa and IIx) fibers [1]. Slow-twitch muscle fibers (STMF) have 
higher oxidative capacity than fast-twitch muscle fibers (FTMF), which 
have higher glycolytic enzyme activity [2] and faster maximal shorten-
ing velocities that contribute to superior maximal power [1]. Subjects 
with a greater proportion of STMF generally complete a greater num-
ber of repetitions at 80% 1 repetition maximum (1RM) during resis-
tance training than individuals with increased proportion of FTMF [3].
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The proportion of each fiber type varies considerably according 
to muscle location [4] and also between individuals, with each re-
lated to the interaction of biology and environment [5]. Biological 
factors include age [6, 7], sex [8] and genetics [9], with exercise 
representing a strong environmental factor [10]. Muscle fiber com-
position is associated with athletic performance [11], with athletes 
who require superior aerobic and endurance capacity (such as mid-
dle- and long-distance runners) having as many as 90% STMF, and 
athletes reliant on strength, power and anaerobic capacity (such as 
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the combined association of multiple factors with muscle fiber com-
position in a sample containing athletes and non-athletes. With nu-
merous factors associated with muscle fiber composition, investigat-
ing the combined relationship of these factors will explain a greater 
proportion of individual variability than one factor in isolation. It is 
also possible that there are additional factors associated with muscle 
fiber composition that are currently unknown. The aim of the present 
study, therefore, was to determine the independent and combined 
relationship of muscle fiber composition in the vastus lateralis with 
health- and exercise-related traits in athletes and non-athletes.

MATERIALS AND METHODS 
Ethical approval
The study was approved by the Ethics Committee of the Physiolog-
ical Section of the Russian National Committee for Biological Ethics 
and Ethics Committee of the Federal Research and Clinical Center 
of Physical-chemical Medicine of the Federal Medical and Biological 
Agency of Russia. Written informed consent was obtained from each 
participant. The study complied with the guidelines set out in the 
Declaration of Helsinki and ethical standards in sport and exercise 
science research.

Study participants
A total of 164 Russian subjects (54 females, 110 males; 99 athletes, 
65 untrained controls) participated in this study. Participants were 
divided into 6 subgroups: female endurance athletes (n = 14; age 
18–42 years; 9 middle- and long-distance runners, 3 road cyclists, 
and 2 middle-distance speed skaters), female power athletes (n = 15; 
age 18–34 years; sprinters in cycling (n = 5), running (n = 3) and 
speed skating (n = 3), 3 powerlifters and one skeleton athlete), female 
controls (n = 25; age 20–51 years), male endurance athletes (n = 37; 
age 19–54 years; 21 middle- and long-distance runners, 5 cross-
country skiers, 5 road cyclists, and 6 triathletes), male power athletes 
(n = 33; age 18–41 years; sprinters in cycling (n = 6), running 
(n = 3) and speed skating (n = 3), 4 weightlifters, 14 powerlifters, 
two skeleton athletes, one decathlete), and male controls (n = 40; 

sprinters and weightlifters) having between 60  and 80% 
FTMF [12–14]. These differences reflect the suitability of oxidative, 
fatigue resistant STMF to endurance performance [12], and the fa-
vourable anaerobic properties of FTMF during short bursts of speed 
and power [15]. However, very few athletic activities rely solely on 
one fiber type, and there are several other traits related to muscle 
fiber composition.

The metabolic characteristics of skeletal muscle fibers can be 
modified through exercise, whereas the biological influence of an 
individual’s age, sex and genetic code cannot [9]. In adults, a gradu-
al increase in STMF and a gradual decrease in FTMF is observed with 
age [7, 16, 18], though this may differ between males and females [6]. 
In non-athletes, males exhibit greater cross-sectional area for all fiber 
types, with some suggesting males have a similar proportion of each 
fiber type to females [5] and others demonstrating that males have 
fewer STMF [17, 18]. Approximately 45% of muscle fiber composition 
is heritable and around 40% is attributable to the environment [9]. 
Heritable factors include common DNA sequence variants, such as 
single nucleotide polymorphisms (SNPs), indels and structural varia-
tions, which can alter gene expression and/or protein structure and 
are summarised elsewhere [16, 18, 19]. Nonetheless, it is suggested 
that the exclusive combination of environment and exercise determines 
up to 30% of the observed differences in muscle fiber composition 
between individuals [17]. In consideration of evidence that suggests 
the relationship of specific biological factors, such as genetic variation 
and age, is associated with sex [6, 7, 18], it is apparent that several 
biological factors interact with one another, as well as with external 
factors, to determine muscle fiber composition. It is also apparent that 
muscle fiber composition may be associated with measures of car-
diovascular risk [20] and bone mineral density [21]. However, the 
association of these measures with muscle fiber composition in ath-
letic populations is unknown.

Due to the effects of exercise [10, 22–24], the relationship of 
biological factors with muscle fiber composition is likely to differ 
between athletes and non-athletes. Whilst some investigations have 
recruited athletes [12, 22, 23, 25, 26], there is a need to explore 

TABLE 1. Participant characteristics

Group n Age Height (cm) Weight (kg) Training age (years)

Female endurance 14 27.1 (5.9) 168.8 (5.9) 58.3 (6.9) 12.9 (5.5)

Female power 15 24.8 (5.5) 168.3 (5.6) 61.1 (4.9) 11.0 (6.3)

Female controls 25 30.4 (7.8) 165.7 (4.6) 58.8 (5.1) -

Male endurance 37 34.8 (8.6) 180.3 (6.4) 76.8 (9.3) 12.9 (9.1)

Male power 33 27.8 (6.1) 179.8 (5.4) 86.8 (11.8) 10.3 (5.6)

Male controls 40 29.7 (8) 180.4 (6.6) 79.6 (8.2) -

Note: all data are presented as mean (SD).
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age 18–53 years). There were 30 non-elite (amateur level), 32 sub-
elite (regional competitor) and 37 elite athletes (international com-
petitor). Basic characteristics of each subgroup are provided in Table 1.

Anthropometry
Anthropometric measurements were taken according to standard 
techniques [27] using the GPM anthropometric measurement kit 
(DKSH, Switzerland). Subjects were measured barefoot, wearing only 
underwear. Body mass was measured using a battery-operated 
digital scale (precision 100 g). Height was measured using an an-
thropometer (1 mm precision). Chest depth is defined as the sagittal 
diameter of the chest and was measured using a spreading caliper 
(1 mm precision).

Health status
Resting systolic and diastolic blood pressure (BP) and resting heart 
rate (RHR) were assessed in the morning before any type of activity 
and eating after 5 min of seated rest using an automatic blood pres-
sure/heart rate monitor (Omron M2, Kyoto, Japan). Fracture incidence 
was evaluated using questionnaire, with participants classified as 
having suffered any type of fracture in their lifetime (score 1) or none 
(score 0). Health-related traits in each subgroup are presented in 
Table 2.

Evaluation of muscle fiber composition by immunohistochemistry
Vastus lateralis samples were obtained from the left leg using the 
modified Bergström needle procedure [28] with aspiration under 
local anaesthesia with 2% lidocaine solution. Prior to analysis, sam-
ples were frozen in liquid nitrogen and stored at -80°C. Serial cross-
sections (7 μm) were obtained from frozen samples using an ultratom 
(Leica Microsystems, Germany). Sections were thaw-mounted on 
Polysine glass slides, maintained at room temperature (RT) for 15 min 
and incubated in PBS (3 x 5 min). The sections were then incu-
bated at RT in primary antibodies against slow or fast isoforms of 
the myosin heavy chains (M8421, 1:5000; M4276; 1:600, 
respectively; Sigma-Aldrich, USA) for 1 h and incubated in PBS 

(3 x 5 min). Next, the sections were incubated at RT in secondary 
antibodies conjugated with FITC (F0257; 1:100; Sigma-Aldrich) for 
1 h. The antibodies were removed, and the sections washed in PBS 
(3 x 5 min), placed in mounting media and covered with a cover 
slip. Images were captured by fluorescent microscope (Eclipse Ti-U, 
Nikon, Japan). All analyzed images contained 330 ± 11 fibers. The 
ratio of the number of stained fibers to the total fiber number was 
calculated. Fibers stained in serial sections with antibodies against 
slow and fast isoforms were considered hybrid fibers.

Physical activity and training parameters
Training parameters were assessed by questionnaire. Athletes were 
classified according to their training frequency as mildly active (2 
training sessions per week), moderately active (3–4 training sessions 
per week), highly active (5–7 training sessions per week) and ex-
tremely active (two training sessions per day). Training age was ex-
pressed as years of training. Participants (athletes and controls) scored 
their individual tolerance to long distances and sprinting ability as 
poor (0), fair (1), good (2) or excellent (3).

Reaction time measurement
Visual reaction time was evaluated using the previously described 
Traffic light test [29]. Briefly, subjects sat at a table with the palm of 
the dominant hand supported and their index finger on a computer 
mouse. The participants were consistently presented with light signals 
in the centre of the monitor screen and were instructed to click the 
button when a green signal appeared. The duration of the intervals 
between red and green signals ranged from 0.5 to 5 s. The first 
5 signals were trial efforts and were not recorded. The best three 
attempts from the following 5 signals were recorded and the average 
reaction time used for analysis.

Statistical analyses
Statistical analyses were conducted using GraphPad InStat (GraphPad 
Software, Inc., USA) software. Differences in slow-twitch muscle 
fiber percentage (STMF%) between athlete and controls and between 

TABLE 2. Health-related characteristics in participants

Group n SBP, mmHg DBP, mmHg Heart rate, bpm Fracture incidence,%

Female endurance 14 115.5 (8.1) 70.4 (8.3) 52.0 (7.8) 50.0

Female power 15 111.6 (9.5) 72.0 (9.8) 58.4 (7.1) 20.0

Female controls 25 111.6 (6.7) 73.2 (6.3) 68.1 (7.4) 16.0

Male endurance 37 120.5 (7.4) 73.1 (8.0) 47.4 (6.4) 32.4

Male power 33 121.1 (8.1) 74.3 (11.3) 62.9 (9.2) 57.6

Male controls 40 122.2 (6.0) 78.9 (9.1) 68.6 (9.3) 37.5

Note: Data are presented as mean (SD).
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runners for endurance athletes), therefore we felt justified in combin-
ing these subgroups of athletes into one major group (i.e. endurance 
and power athletes only). As expected, STMF% was significantly 
greater in endurance athletes than power athletes and controls for 
both sexes (Table 3). However, there was no difference in STMF% 
between power athletes and controls. In untrained controls, STMF% 
was higher in females than males (52.7 (14.7) vs. 44.2 (14.0)%, 
P = 0.018) (Table 3).

Relationship between muscle fiber composition and health-relat-
ed traits
Slow-twitch muscle fiber percentage was positively related to age in 
endurance athletes (P = 0.019) and controls (P = 0.0002), with 

sexes were analysed using unpaired t-tests. Multiple regression was 
used to assess the relationships between STMF% and all other con-
tinuous variables (adjusted for sex, age, training frequency, type of 
training, BMI where appropriate) and to determine the combined 
association (R2, the percentage of variance in STMF percentage) of 
individual factors adjusted for covariates. All data are presented as 
mean (SD). P values < 0.05 were considered statistically significant.

RESULTS 
Muscle fiber distribution in athletes and controls
There were no significant differences in STMF% or FTMF% between 
subgroups of athletes for both sexes (e.g. strength athletes vs sprint-
ers for power athletes or road cyclists vs middle- or long-distance 

TABLE 3. Muscle fiber distribution according to sex and training type

Group n
Percentage  
of STMF

Percentage  
of FTMF

P values for STMF
Endurance  
vs power

Athletes vs controls 
(same sex)

Female endurance 14 61.8 (9.9) 41.2 (10.0)
0.014*

0.047*
Female power 15 51.1 (11.8) 51.6 (10.4) 0.724
Female controls 25 52.7 (14.7) 50.4 (13.4) - -
Male endurance 37 60.8 (16.2) 42.6 (17.1)

 < 0.0001*
 < 0.0001*

Male power 33 46.3 (10.7) 56.7 (10.7) 0.486
Male controls 40 44.2 (14.0) 58.7 (13.6) - -

*P < 0.05, statistically significant differences. All data are presented as mean (SD).

TABLE 4. Relationship between slow-twitch muscle fiber percentage and multiple traits

Factor
P value

All participants
(n = 164)

Endurance athletes
(n = 51)

All power athletes
(n = 48)

All controls
(n = 65)

Age 0.0001* 0.019* 0.529 0.0002*
Sex 0.0033# 0.515 0.245 0.018#

Training frequency - 0.042* 0.038* -
Training age - 0.538 0.045* -
Level of competition - 0.034* 0.555 -
Reaction time 0.094 0.786 0.235 0.026#

Self-reported tolerance to LD 0.0002* 0.219 0.629 0.421
Self-reported sprinting ability 0.30 0.324 0.853 0.756
Height 0.099 0.118 0.939 0.993
Weight 0.754 0.862 0.948 0.766
BMI 0.657 0.994 0.973 0.877
Chest depth 0.023* 0.03* 0.145 0.609
Systolic BP 0.042# 0.825 0.358 0.005#

Diastolic BP 0.141 0.896 0.045# 0.406
Resting HR 0.0067# 0.163 0.118 0.284
Fracture incidence 0.021* 0.074 0.09 0.443 
*P < 0.05, positive relationship between STMF% and a variable adjusted for covariates (where appropriate: sex, age, training frequency, 
type of training, BMI); #P < 0.05, negative relationship between STMF% and a variable adjusted for covariates (where appropriate: 
sex, age, training frequency, type of training, BMI). LD, long distances



Biology of Sport, Vol. 38 No4, 2021   169

Athletes and muscle fibers

no relationship in power athletes (P = 0.529) (Table 4). Systolic 
(P = 0.005) and diastolic (P = 0.045) BP were negatively related 
to STMF% in controls and power athletes, respectively. In all par-
ticipants, STMF% was positively related to fracture incidence 
(P = 0.021), and negatively related to systolic BP (P = 0.042) and 
RHR (P = 0.007). In endurance athletes (P = 0.03) and all par-
ticipants (P = 0.023), chest depth was positively related to STMF%. 
There was no association between muscle fiber composition and 
other anthropometric traits (i.e. height, weight, BMI etc.).

Relationship between muscle fiber composition, performance and 
exercise-related traits
Endurance (P = 0.042) and power athletes’ (P = 0.038) STMF% 
was positively related to exercise frequency, with power athletes 
STMF% positively related to training age (P = 0.045) (Table 4). 
Endurance athletes’ STMF% was positively related to level of com-
petition (P = 0.034) and self-reported tolerance to long distances 
was positively related to STMF% for all participants (P = 0.0002). 
Non-athletes’ STMF% was negatively related to reaction time 
(P = 0.026).

Contribution to the variability in STMF percentage
When combined, age, sex and exercise frequency explained 10.6% 
(P < 0.0001) and 13.2% (P < 0.0001) of the variance in STMF% 
for endurance and power athletes, respectively.

DISCUSSION 
This comprehensive study aimed to determine the relationship be-
tween muscle fiber composition and health- and exercise-related 
traits in athletes and non-athletes. The novel findings of this study 
were the associations of RHR, bone fracture incidence and chest 
depth with STMF%, whilst confirming the relationship between 
STMF% and BP. As anticipated, endurance athletes had a greater 
STMF% than power athletes and non-athletes, female non-athletes 
had a greater STMF% than male non-athletes, and chronological age 
was associated with STMF%, though not for power athletes. Interest-
ingly, STMF% was positively related to training age in power athletes, 
and to endurance athletes’ level of competition, suggesting a greater 
STMF% is advantageous to elite endurance performance. Training 
frequency was positively related to STMF% in all athletes’, with the 
combination of age, sex and training frequency explaining 10.6% 
and 13.2% of the variance in STMF% amongst endurance athletes 
and power athletes, respectively.

The present study found that BP and RHR were associated with 
STMF%. Systolic BP was negatively associated with STMF% in all 
participants and in non-athletes, with diastolic BP negatively associ-
ated with STMF% in power athletes. Thus, a greater STMF% was 
associated with lower BP and is in concordance with previous lit-
erature [20]. A novel finding was the negative relationship between 
STMF% and RHR. To our knowledge, this is the first association of 
STMF% with RHR and is in line with ours and previous observations 

relating to BP, with elevated RHR previously associated with increased 
systolic and diastolic BP in healthy individuals [30]. Due to the 
physiological relationship between RHR and BP, it is logical that the 
association of both measures with STMF% follows a consistent pat-
tern. We therefore speculate that an increased proportion of STMF 
may protect against the development of cardiovascular diseases.

Bone fracture incidence was associated with STMF%, with a pos-
itive relationship between STMF% and fracture risk. Low bone min-
eral density contributes to increased fracture risk [31] and there is 
a correlation between FTMF and bone mineral density [21]. Further-
more, the adaptive responses of FTMF strength [32] and bone min-
eral density [33] to resistance training indicates interplay between 
bone and skeletal muscle. Indeed, it is suggested that mechanical 
force primes both tissues to regulate and release specific factors to 
induce an adaptive response in the opposing tissue [34]. The recent 
discovery of pleiotropic genes that regulate muscle and bone [35] 
follows evidence that muscle and bone share a common mesenchy-
mal precursor during development, which tightly orchestrates or-
ganogenesis to ensure the synchronous development of both tis-
sues [36]. We suggest the association with fracture risk is due to 
individuals with greater STMF% having reduced protection against 
fracture risk, and as a consequence of the relationship between bone 
mineral density and FTMF percentage.

Chest depth is a measure of the chest’s saggital diameter and this 
trait was positively related to STMF% in all participants and in endur-
ance athletes alone. At present, little is known regarding the role of 
chest depth in exercise physiology, meaning it is unclear how this 
phenotype affects exercise capacity. Despite a lack of evidence relat-
ing to exercise, the “barrel-shaped chest” phenotype typical of high-
altitude natives as an adaptive response to hypobaric hypoxia [37] 
suggests the positive association of STMF% with chest depth could 
benefit aerobic activity. We speculate that greater chest depth may 
aid maximal lung expansion during pulmonary ventilation and may 
favour aerobic performance when combined with a high percentage 
of oxidative muscle fibers. Therefore, given that chest depth is heri-
table [38], it is possible that individuals with inherently greater 
STMF% and chest depth may be suited to endurance performance. 
Indeed, chest depth and level of competition were both positively 
associated with endurance athletes’ STMF%, suggesting there may 
be a benefit of this phenotype to endurance capacity. In non-athletes, 
we also observed that STMF% was related to faster reaction times, 
a finding which is currently unexplained. The lack of association 
between STMF% and reaction time in athletes may reflect the posi-
tive effect of long-term training on athletes’ visuomotor reaction ca-
pacity [39], though further research is required to investigate the 
relationship of STMF% with reaction time.

Despite considerably different training practices between endur-
ance and power athletes, training frequency and STMF% were 
positively associated in all athletes. For endurance athletes, this is 
probably due to heritable factors plus frequent exposure to aerobic 
training [23, 32]. However, whilst power-orientated sports rely 
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the assessment of athletes’ training parameters and fracture incidence 
by questionnaire could be subject to self-report bias or recall error. 
We also acknowledge our findings are limited to Russian participants, 
and we welcome replicative studies in other nationalities. Finally, 
other factors potentially related to muscle fiber composition were not 
included in the present study. Future studies that combine the factors 
associated with muscle fiber composition in the present study with 
additional measures, such as genetic screening and quantification of 
physiological capacity, will help to improve the understanding of 
muscle fiber composition.

Practical applications
We report novel associations of STMF% and with heart rate, chest 
depth and fracture risk and support previous relationships of this trait 
with age, endurance ability and blood pressure. Once replicated in 
independent cohorts, measures of resting heart rate, chest depth and 
self-reported tolerance to long distances could be combined with 
additional variables, such as consecutive back squat repetitions at 
80% 1RM [3], to investigate whether the indirect estimation of 
STMF% can be improved using multiple non-invasive measures. An 
ability to indirectly estimate muscle fiber composition with confidence 
would be particularly useful to practitioners working in health, exer-
cise and professional sport, where there is limited access to direct 
assessment of muscle fiber composition.

CONCLUSIONS 
The present study demonstrates that the combination of age, sex 
and training frequency account for 10.6% and 13.2% of the variance 
in STMF% in endurance and power athletes, respectively, with age 
and sex also associated with non-athletes’ STMF%. This study also 
provides novel information concerning the positive association of 
STMF% with resting heart rate, tolerance to long distance exercise 
and reaction time, and larger chest depth. On the other hand, a great-
er FTMF percentage was associated with rare fracture incidence, and 
we confirm the negative relationship of STMF% with blood pressure. 
However, the contribution of age, sex and training frequency explained 
less of the variance in muscle fiber composition than that previ-
ously attributed to heritable factors, suggesting that the heritability 
of muscle fiber composition is among the strongest determinants of 
elite athletic performance.
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predominantly on FTMF [13, 14], the positive relationship of 
STMF% with power athletes’ training frequency and training age 
may be because experienced power athletes are exposed to frequent 
training stimuli for longer than less experienced athletes, augment-
ing the documented improvements in oxidative capacity from re-
sistance training [40]. It is also possible that power athletes with 
greater STMF% are able to recover faster between intense training 
sessions [41] and, therefore, can maintain a higher training fre-
quency.

Endurance athletes had greater STMF% than power athletes and 
non-athletes, which was expected due to previous evidence [12, 13]. 
The positive association of STMF% with the level of competition in 
endurance athletes suggests that athletes with greater STMF% are 
more likely to reach the elite level of endurance sport. In contrast, 
similar STMF% between controls and power athletes supports previ-
ous work [11, 12] and suggests power performance is more reliant 
on exposure to environmental factors, with strength adaptations 
typically achieved through the hypertrophy of existing fibers [23, 24]. 
Together, it appears that the selection of endurance and power ath-
letes into their respective sports depends heavily on muscle fiber 
composition, with the heritability of muscle fiber composition [9] 
likely to differentiate between successful athletes in each discipline. 
Evidence that genetic factors are associated with athletes’ muscle 
fiber composition [42–45] and athletic performance [46–48] provide 
further support for this concept.

The positive association of chronological age with STMF% in 
endurance athletes and controls is likely to reflect the concomitant 
increase and decrease in STMF and FTMT proportions, respectively, 
that occurs with age [7, 18]. This contributes to the age-related loss 
of muscle mass termed sarcopenia, characterised by the decreased 
number and size of FTMF that leads to reduced muscle mass and 
strength [49]. The mechanical stimuli and anabolic signalling elic-
ited by resistance exercise can offset this process [50] and may 
explain why STMF% was unrelated to power athletes’ age. We also 
observed a greater STMF% in female controls than male controls, in 
support of previous work [8, 17, 18]. The combination of age, sex 
and training frequency explained 10.6% and 13.2% of the variance 
in STMF% amongst endurance athletes and power athletes, respec-
tively. Considering that ~45% of the variability in muscle fiber com-
position is heritable [9], our findings suggest heritable factors are 
stronger determinants of athletes’ muscle fiber composition than their 
age, sex and training frequency combined, providing further support 
to the concept that the heritability of muscle fiber composition is 
a key determinant of elite athletes’ success.

This study included a sizeable number of athletes and non-athletes, 
providing novel information on the relationship of muscle fiber com-
position with health- and exercise-related traits. However, this study 
also has limitations. Firstly, the present data are associational and 
do not describe the mechanistic cause of each relationship. Second, 
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