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Predicting RPE in youth soccer

INTRODUCTION
Athlete monitoring data provide information to coaching staff about 
desired (fitness) and undesired (fatigue) training outcomes, thus 
representing how athletes react to training stimuli [1]. To optimize 
the process of training, coaches should understand the dose-response 
relationship [2]. There is a great deal of evidence that appropriate 
management of training loads is effective in improving physical per-
formance [3], reducing the risk of injury and illness [4], and minimiz-
ing the risk of non-functional overreaching [5].

When it comes to training and match loads, it is common to dis-
tinguish between the external and internal load [6]. External load is 
the work completed by an athlete independently of internal respons-
es [7], whereas internal load represents the psychophysiological stress 
experienced by the player in response to external stimuli. Training load 
monitoring in team sports is difficult to achieve because: a) various 
exercises have different physiological and mechanical requirements; 
b) individual physical and physiological responses to the same 
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external workload can be different [8], which is caused by individual 
characteristics of the players, such as physical fitness. Monitoring 
both internal and external loads is important in soccer because of 
individualized responses to the same external load [9]. Furthermore, 
research shows a discrepancy between the exertion intended and 
observed by the coach and exertion as perceived by the player [10].

In running-based team sports, one of the most valid and reliable 
tools for monitoring metrics related to external training load is the 
global positioning system (GPS) [11]. Use of this system is becom-
ing increasingly common because of its great practicality [12]. Some 
of the metrics provided by this system that practitioners can use to 
analyse activity profiles of athletes include: total distance covered, 
distance covered at different speed zones, and the number of ac-
celerations and decelerations [13].

Internal training load can be quantified using the rating of perceived 
exertion (RPE) [14], which is based on the Borg CR10 scale [15], 
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study was conducted and fully approved before the start of the as-
sessments by the Health Research Ethics Committee of the institution 
where the research was conducted. All participants or their parents/
guardians were informed of the risks and signed an informed consent 
form before the investigation.

Design
Training load data were collected during the 2018–2019 in-season 
competition period. The in-season period was used to minimize vari-
ability in physical fitness. Data were only analysed from microcycles 
which contained one game. All of the analysed training sessions took 
place during the same part of the day. Only field-based soccer ses-
sions with warm-ups performed on the field were included for the 
purpose of the study. A typical microcycle during this period in-
cluded 5–6 field based sessions with a break of 24 hours between 
consecutive training sessions. Only data from players who performed 
the full session duration were analysed. Individual rehabilitation and 
individual fitness sessions were not included in the analysis. All 
training sessions within the investigation period were performed on 
the same surface, an outdoor grass training pitch. During rest periods, 
players were allowed to drink fluids.

A total of 804 training observations were made. The number of 
sessions recorded per player ranged from 12 to 76 with a mean of 
43 ± 17 sessions and the mean duration of a training session was 
68 ± 15 minutes, with an average temperature of 10.2 ± 3.11°C.

Methodology
The players’ external load during each training session was monitored 
using a non-differential 10 Hz global positioning system (GPS) inte-
grated with a 400 Hz Triaxial Accelerometer and a 10 Hz Triaxial 
Magnetometer (PLAYERTEK, Catapult Innovations, Melbourne, Aus-
tralia). The reliability and validity of these types of GPS devices for 
use in team sports have been reported [11, 27]. The devices were 
placed between the players’ scapulae, through a tight vest. Each 
player wore the same unit for all of the collection period to minimize 
inter-unit variability [28]. After recording, data were downloaded and 
analysed using a software package.

The internal load was measured using the modified Borg CR-10 
scale [14]. Each player’s RPE was collected in isolation ~20 minutes 
after each training session to eliminate the impact from the last part 
of the training session [14] and to minimize the influence of peer 
pressure [29]. The RPE was derived by asking each player “How 
hard was your session?” with 1 being very, very easy and 10 being 
maximal exertion. All players were fully familiarized with the use of 
RPE before the beginning of the study.

External measures of intensity
For the purpose of this study, 8 variables were recorded. Total distance 
(TD, m), high-speed running distance (HSR, distance above 
19.8 km·h-1, m), PlayerLoad (PL, a.u.), impacts (above 3 g, n), 
distance in acceleration/deceleration (above 2 m·s-2, m) and the 

or the Foster modified version of the CR10 [14]. Previous research 
has established RPE-based methods as a straightforward, valid mea-
surement of internal training load by demonstrating a strong correla-
tion between RPE and other objective internal load measurements 
such as heart rate and blood lactate [16]. Furthermore, compared 
to heart rate, RPEs integrate psychological and physiological load 
experienced by athletes [17], making it a simultaneously simple, 
versatile, and cost-effective method [18].

Knowledge about athletes’ responses to the external training load 
in the training process is crucial in the context of effectively prescrib-
ing and monitoring training loads [19]. Therefore, it is important to 
integrate external and internal training load metrics [12]. Monitoring 
of training at youth level is essential, not only to enable players to 
reach higher performance levels, but also for preserving athletes’ 
health in the long term and consequently avoiding early retire-
ment [20].

The relationship between internal and external load measures has 
been previously studied in adult soccer players at different lev-
els [21–24]. However, all of this previous research investigated the 
internal-external training load relationship only at the group level, with 
linear models. Recently, Bartlett et al. [25] proposed an approach to 
performing this kind of analysis on an individual basis using machine 
learning techniques (namely artificial neural networks), which appear 
to be better equipped to predict athlete response to external training 
load metrics accurately. Unfortunately, the neural networks used in 
their study are black-box machine learning models, which means that, 
contrary to linear models, they do not provide any insights for practi-
tioners other than mere predictions. Another problem is that some of 
the previous research has erroneously used the terms ‘association’ 
and ‘prediction’ interchangeably [26]. Moreover, the relationship be-
tween internal and external measures of training load for youth soccer 
players has not yet been studied at the individual level.

Therefore, the first aim of the present study was to determine the 
effectiveness of white-box decision tree models for predicting RPE 
based on GPS-derived external measures of intensity, as well as to 
attempt a visualization of such a model. The second aim was to 
examine the relationship between internal load and external measures 
of intensity in youth soccer training using machine learning techniques 
at the group and individual level.

MATERIALS AND METHODS 
Participants
Eighteen youth soccer players (age 17.81 ± 0.96 years, height 
179.47 ± 4.77 cm, body mass 70.94 ± 4.72 kg) participated in 
the investigation. More than half of the players were members of 
their youth national teams. The players who participated in this study 
were competing at the highest level in their under-19 age category 
soccer league. During the investigation, none of the players were 
injured. Goalkeepers were not included in the study due to the dif-
ferent physical demands of their position. Although the data obtained 
for this analysis are part of the athletes’ daily monitoring routine, the 
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number of accelerations/decelerations (ACC/DEC, above 2 m·s-2, n). 
All variables recorded were reported in relative terms (per minute).

The speed threshold for HSR was established in light of previous 
research [30–31]. PlayerLoad, calculated automatically using an 
established algorithm, is a measure from tri-axial accelerometers in 
GPS, and represents the sum of accelerations recorded in the an-
teroposterior, mediolateral, and vertical planes of movement. Research 
has shown that PlayerLoad is a valid and reliable measure [24, 32]. 
Player impact data extracted from triaxial accelerometers measure 
significant impact events (e.g. collision activities), but exclude foot-
steps when walking or running. Impact was defined as maximum 
accelerometer magnitude values above 3 g in a 0.1 second period. 
Acceleration is defined as an increase in speed for at least 0.5 s that 
exceeds a maximum acceleration of at least 2 m·s-2. The same ap-
proach was used with regard to deceleration, which is defined as 
a decrease in speed for at least 0.5 s that exceeds a maximum de-
celeration of at least -2 m·s-2.

Statistical analysis
Decision trees were used to analyse the collected data. These com-
monly used, non-parametric, and non-linear statistical models applied 
in machine learning [33]. Tree models offer a number of advantages, 
including interpretability, automatic capture of interactions between 
predictors, efficient training and prediction procedures, and accurate 
modelling. Such advantages have led to their widespread use in many 
areas, for instance, in medicine [34] and psychology [35]. A more 
extended discussion and comparison with, e.g., linear models has 
been undertaken by Breiman [36]. Comparing regression trees to the 
neural networks used in related works [25], the former offer not only 
more accurate predictions, but also the possibility to visualize the 
model. This allows for subsequent expert analysis, which is similar 
to linear models.

The regression trees were constructed using the CART proce-
dure [37]. Mean squared error (MSE) was selected as a splitting 
criterion since it is most commonly used for the regression task. The 
standard procedure to make decision tree models more accurate and 
interpretable is tree pruning [37]. In this study we used an early 
stopping criterion on tree depth as a form of pre-pruning. We con-
structed a global (population) tree model, which was fitted with 
observations for all the players, and eighteen individualized models 
built for each particular athlete. Feature importance was calculated 
as normalized total reduction of MSE by feature in the regression tree 
and estimated with bootstrapping [38]. Variables included in the 
models were selected with a combination of expert knowledge [13] 
regarding their practicality during training planning and maintaining 
a variance inflation factor (VIF) of < 5 to avoid multi-collinearity. In 
order to assess the performance of our model root mean squared 
error (RMSE) was used. RMSE is the standard deviation of the re-
siduals (prediction errors) and is frequently used to measure the 
error of a model in predicting quantitative data. Statistical analysis 
was conducted with scikit-learn software (Python).

RESULTS 
Mean intensity measures are presented in Table 1. Figure 1 shows 
the distribution of RPE values. Figure 2 shows a decision tree mod-
el used for prediction of RPE with seven leaf nodes and depth = 3. 
Results from the decision tree regression for the entire group are 
shown in Figure 3 (population model). The aggregated importance 
of each intensity variable across all players revealed high-speed run-
ning distance per minute as the strongest predictor of RPE, with 
a relative importance of 0.61. The prediction error (RMSE) of the 
population tree model is 1.621 ± 0.001. Figure 4 represents the 
normalized importance (%) of each training intensity variable in in-
dividualized models for each player. The obtained results demonstrate 
that the strongest predictor of RPE was also high-speed running 
distance per minute. This variable has the highest importance score 
for half of the players (9/18). The number of impacts per minute and 
number of accelerations per minute were the strongest RPE predic-
tors for four players, whilst distance per minute was the strongest 
predictor for only one player (#15). The prediction error was lower 
compared to the model for the entire group and accounted for RMSE 
of 0.755 ± 0.014.

DISCUSSION 
The relationship between internal load and external measures of 
training intensity is important in understanding the dose–response 
nature of youth soccer players’ training. According to the current body 
of knowledge concerning individual physical and physiological re-
sponses to the same external workload, responses at the group 
level are helpful in understanding overall relationships between ex-
ternal and internal training load. A more detailed analysis at the 
individual level should be carried out to in order to inform decision 
making [39].

The first aim of the present study was to determine the effective-
ness of decision tree models for predicting RPE, based on 

TABLE 1. Descriptive statistics of collected data.

Variable Mean SD

External intensity measures

RPE 4.6 1.9

Distance (m) per minute 71.7 14.6

PlayerLoad (a.u.) per minute 3.8 0.8

Impacts (n) per minute 2.5 2.0

High-speed running distance (m) per minute 3.0 3.8

Distance in deceleration (m) per minute 3.0 1.0

Distance in acceleration (m) per minute 2.4 0.7

Accelerations (n) per minute 2.3 0.6

Decelerations (n) per minute 2.2 0.6
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Despite these differences, comparison of the RMSE obtained in this 
study showed significantly lower error for the individual player 
(RMSE = 0.755 ± 0.014) compared to the previously mentioned 
study on Australian rules football (RMSE = 1.24 ± 0.41).

The relationship between internal and external load measures in 
soccer and rugby league have been investigated using traditional 
statistical methods, such as Pearson correlation coefficients, multiple 
regression, and general linear models with partial correlation coef-
ficient [9, 22, 24], all of which are linear methods. Studies on 
Australian football [25] and soccer [41] used a machine learning 
approach to predict players’ responses based on GPS‑derived exter-
nal load measures. In the first study, ANN were used, whilst the 
latter employed artificial neural networks together with least absolute 
shrinkage and selection operator (LASSO). LASSO is an interpretable 
regression model but is linear and does not take into account the 
fact that data were collected within subjects over time. Jaspers 
et al. [41] indicated difficulties in the interpretation of the model’s 
results as a clear disadvantage of ANN. This could indicate an ob-
stacle for practical application of this information in daily practice. 
We do know, however, that the possibility for a model to be visualized 
and analysed by stakeholders can increase coaching staff ‘buy-in’, 
and consequently improve the confidence of decisions made [42].

Moreover, recently studies in soccer [40, 43] attempted to predict 
RPE using both GPS‑derived external load indicators and additional 
variables. Both of the studies used different machine learning tech-
niques. In their analysis, Geurkink et al. [40] included a large set of 
predictive indicators. In addition to external load indicators, internal 
load indicators, individual characteristics and supplementary variables 
were used to predict RPE. The findings from this study show that 
external load indicators – total distance, total time and number of 
sprints – are the strongest individual predictors of the RPE, account-
ing for 61.5% of normalized importance. A large number of different 
external load indicators derived from GPS, together with contextual 

GPS-derived, external measures of intensity, as well as a visualization 
of this model. The second aim was to examine the relationship be-
tween RPE and external measures of intensity in youth soccer train-
ing at group and individual levels. This was achieved through machine 
learning techniques.

As mentioned above, the most common approaches found in 
sports science literature for quantifying the relationships between 
external and internal training load are based on traditional statistical 
methods, which are linear models [9, 22, 24]. The novel method 
proposed in the present study is to use decision tree models for 
quantifying these relationships and prediction of RPE based on 
GPS-derived external measures of intensity.

The root (root node) of the tree in the present model is the ques-
tion pertaining to high-speed running distance per minute. This is 
the starting point for the process of RPE value prediction. In our 
model, the first question is whether high-speed running distance per 
minute is above or below 6.2 m per minute. Branches represent 
potential answers. These are points where one of two options must 
be selected. The leaves of a decision tree are the decisions made 
and represent the value of predicted RPE at a particular level. RPE 
value on the last leaf can thus be predicted based on external mea-
sures of training intensity.

The prediction error of every leaf is presented in the figure and 
expressed as mean squared error (MSE). It is worth noting that the 
lowest available value of RPE in this model has the lowest MSE 
among all those possible. We concluded that if a player reported 
a low value of RPE, this is strictly reflected in external intensity 
measures. Thus, after reporting a low value of RPE, subsequent 
training loads can be planned with confidence. MSE is the highest 
for average values of RPE (MSE = 3.037 for RPE = 4.98), which 
could suggest that players find it difficult to determine medium exer-
tion on Borg’s scale.

The comparison of prediction error (RMSE) of the predictive tree 
model for group (1.621 ± 0.001) and for the individual player 
(0.755 ± 0.014) confirm that for the assessment of players’ response 
to the external load, individual models should be used [40]. These 
results are in line with previous research on Australian football play-
ers. That study showed that individual artificial neural networks 
(ANN) demonstrated a better ability to predict RPE from external 
training load metrics, compared to the group model [25]. In contrast, 
group models turned out to predict RPE with an equivalent or supe-
rior accuracy compared with individual models in professional soc-
cer [41]. It is worth mentioning that in Australian rules football the 
relationships between RPE and GPS-derived variables were quanti-
fied using at the same time both external load metrics (total distance, 
high-speed running distance) and intensity metrics (session distance 
per minute, percentage of HSR as a proportion of distance covered). 
Similarly, in the case of the second study [41], a set of external load 
measures and intensity related parameters were used at the same 
time. In the present study the relationships between RPE and GPS-de-
rived variables was quantified using intensity related parameters. FIG. 1. Distribution of the rating of perceived exertion (RPE) values.



Biology of Sport, Vol. 39 No2, 2022   249

Predicting RPE in youth soccer

FIG. 2. Decision tree regression model for RPE. 
Abbreviation: ACC, acceleration; HSR, high-speed running distance; TD, total distance; MSE, mean squared error.

FIG. 3. Feature importance in the decision tree regression model constructed for the entire group. 
Abbreviation: ACC, acceleration; HSR, high-speed running distance; TD, total distance.

FIG. 4. Normalized importance (%) of each training intensity variable for each player. 
Abbreviation: ACC, acceleration; HSR, high-speed running distance; TD, total distance.
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soccer, Casamichana et al. reported a strong correlation (r = 0.64, 
p < 0.01) between frequency of efforts at high speed (≥ 18 km/h) 
and sRPE training load [21] and Scott et al. [24] reported a moder-
ate correlation (r = 0.43, p <  .05) between very high-speed 
(> 19.8 km/h) running distance and sRPE training load. These two 
studies showed the overall relationships between external and inter-
nal training load by the use of sRPE training load where training 
duration is a component of this measure. A small, within-individual 
correlation (r = 0.255, p < .001) was found between high-speed 
running distance per minute (> 14.4 km/h) and RPE by Gaudino 
et  al.  [22]. These observations underlined the importance of 
high-speed running in the context of perceived exertion.

The main limitations of the current study are associated with the 
individual characteristics of the player (e.g. level of physical fitness) 
and its possible influence on internal load. The relatively small num-
ber of training observations is the second limitation. In addition, the 
present study was unable to quantify the influence of player self-re-
ported measures, such as sleep quality, fatigue, stress and delayed-on-
set muscle soreness (DOMS).

PRACTICAL IMPLICATIONS
Our results demonstrated that high-speed running distance per min-
ute is the strongest predictor of RPE at the group level. For this reason, 
practitioners should be aware of the importance of HSR volume and 
intensity management. Skilful management of HSR volume and in-
tensity will help avoid undesired fatigue during tapering days in a mi-
crocycle (e.g. one or two days before the match [MD-1, MD-2]), as 
well as negative training effects (e.g. injury) in the long term.

Knowledge about the strongest predictors (external intensity mea-
sures) of RPE at an individual level will allow practitioners to prescribe 
training sessions to replicate competition exertion (e.g. during MD+1) 
or avoid undesired fatigue during return to play processes.

This novel method for prediction of RPE can be useful for stake-
holders (e.g. coaches) because of the possibility of visualization – and 
hence interpretability – without the need for advanced statistical 
knowledge. This method can be used to prescribe daily training loads 
on the basis of predicted, desired players’ responses (exertion).

CONCLUSIONS 
These findings provide further evidence on knowledge about inter-play-
er differences in responses to external load. This is particularly im-
portant in enhancing training prescription and athlete monitoring. 
Furthermore, knowledge about individual relationships between ex-
ternal measures of training intensity helps practitioners to achieve 
desired training outcomes during both training on a daily basis and 
return to play processes. Inter-player differences in responses to ex-
ternal load might be an explanation for mismatches between coach-
es’ intended and players’ perceived exertion.

Conflict of Interest
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factors, have also been used by Rossi et al. [43] to predict RPE. In-
terestingly, the results from this study show that RPE is affected not 
only by workload performed in the current training session but also 
cumulative load. Both studies [40, 43] highlight the importance of 
including a broad spectrum of variables in the prediction model. By 
contrast, the present study is focused on limited external load indica-
tors, which might provide practitioners with a simple tool to understand 
the dose-response relationship between external intensity measures 
and RPE. Moreover, in contrast to the present study, the discussed 
research [40, 43] is not focused on interpretability of the models used.

Quantifying inter-player differences in responses to external mea-
sures of intensity was one of the main objectives of this study (Figure 4). 
Group analysis revealed high-speed running distance per minute as 
the strongest predictor of RPE. This was the most important variable 
in predicting RPE for half of the players, with a relative importance 
of 61% in the global model (Figure 3). However, at individual level 
high-speed running, distance per minute accounted for 7 to 62% of 
the relative importance. Accelerations per minute and impact per 
minute were the most important variables in prediction of RPE for 
four players, with a relative importance of 21 and 12% respectively. 
In contrast, metres covered per minute with the relative importance 
of 5% was the most important variable for only one player, and indi-
vidual level relative importance values ranged from 7 to 51%. The 
obtained results and high variability of importance of the external 
measures of training intensity confirm that internal training load is 
a combination of applied external load and several factors, such as 
individual characteristics of the player, which may modulate the 
player response [6]. The significance of the individual characteristics 
and supplementary variables in quantifying internal load has been 
demonstrated by Geurkink et al. [40]. As indicators in the prediction 
of RPE, players’ individual characteristics (physiological and person-
al) and supplementary variables accounted for 4.5% and 33% of the 
total normalized importance respectively [40]. Therefore, the same 
external training load may result in a completely different internal load.

In line with our observations in the context of the importance of 
high-speed running, results from a systematic review with meta-anal-
ysis [44] clearly demonstrates the importance of high-speed running 
in changes in post-game fatigue-related markers in soccer. Distance 
covered above 5.5 m/s (19.8 km/h, HSR in present study), as the 
only monitoring variable, was highly correlated with both biochemi-
cal and neuromuscular markers. Each 100 m of distance running 
above 5.5 m/s increased by 30% activity of creatine kinase, an 
objective marker of internal training load [44]. Our findings demon-
strate that high-speed running distance per minute is the strongest 
predictor of RPE at the group level. These findings are confirmed by 
a number of previous studies that have emphasized the relationship 
between high-speed running and both RPE and session-RPE (sRPE), 
calculated by multiplying training duration (minutes) by the RPE. 
A moderate correlation was reported between high-speed running 
distance and RPE (r = 0.30) in rugby league training, although 
a different threshold was used in that study (> 15 km/h) [9]. In 
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